Add like
Add dislike
Add to saved papers

Molecular fingerprinting of On-Off direction selective retinal ganglion cells across species and relevance to primate visual circuits.

Journal of Neuroscience 2018 October 31
The ability to detect moving objects is an ethologically salient function. Direction selective neurons have been identified in the retina, thalamus, and cortex of many species, but their homology has remained opaque. For instance, it is unknown whether direction-selective retinal ganglion cells (DSGCs) exist in primates, and if so, whether they are the equivalent to mouse and rabbit DSGCs. Here, we used a molecular/circuit approach in both sexes to address these issues. In mice, we identify the transcription factor Satb2 (Special AT-rich sequence-binding protein 2) as a selective marker for three RGC types: On-Off DSGCs encoding motion in either the anterior or posterior direction, a newly identified type of Off-DSGC and an Off-sustained RGC type. In rabbits, we find that expression of Satb2 is conserved in On-Off DSGCs; however, has evolved to include On-Off DSGCs encoding upward and downward motion, in addition to anterior and posterior motion. Next, we show that macaque RGCs express Satb2 most likely in a single type. We used rabies-virus based circuit mapping tools to reveal the identity of macaque Satb2-RGCs and discovered their dendritic arbors are relatively large and monostratified. Together, these data indicate Satb2-expressing On-Off DSGCs are likely not present in the primate retina. Moreover, if DSGCs are present in the primate retina, it is unlikely that they express Satb2. SIGNIFICANCE STATEMENT The ability to detect object-motion is a fundamental feature of almost all visual systems. Here we identify a novel marker for retinal ganglion cells encoding directional motion that is evolutionarily conserved in mice and rabbits, but not in primates. We show that in macaque monkeys the retinal ganglion cells that express this marker comprise a single type and are morphologically distinct from mouse and rabbit direction-selective retinal ganglion cells. Our findings indicate that On-Off direction-selective retinal neurons may have evolutionarily diverged in primates and more generally provide novel insight into the identity and organization of primate parallel visual pathways.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app