Add like
Add dislike
Add to saved papers

Salinity stress changed the biogeochemical controls on CH 4 and N 2 O emissions of estuarine and intertidal sediments.

Elevated salinity is expected to drive changes in biogeochemical cycling and microbial communities in estuarine and intertidal wetlands. However, limited information regarding the role of salinity in shaping biogeochemical controls and mediating greenhouse gas emissions is currently available. In this study, we used incubation experiment across salinity gradients of the estuarine and intertidal sediments to reveal the underlying interconnections of CH4 and N2 O emissions, biogeochemical controls and salinity gradients. Our results indicated that sediment biogeochemical properties were significantly affected by the increasing salinity, which were attributed to the accelerated sediment enzyme activities. The increasing salinity promoted CH4 and N2 O emission rates by stimulating organic carbon decomposition and nitrogen transformation rates. In addition, the copy number of mcrA, nirS and nirK genes increased along with the salinity gradients, which strongly mediated the CH4 and N2 O emission rates. Stepwise regression analysis suggested that labile organic carbon and denitrification were the most crucial determinants of CH4 and N2 O emission rates, respectively. Overall, salinity could enhance CH4 and N2 O emission mainly by altering sediment geochemical variables, microbial activity and functional gene abundance in estuarine and intertidal environments. Furthermore, increasing salinity could enhance the carbon and nitrogen export, which may pose a threat to the ecological function of estuarine and intertidal ecosystems. This study may contribute to the knowledge about the importance of biogeochemical controls induced by salinity in mediating greenhouse gas emissions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app