Add like
Add dislike
Add to saved papers

Functional characterization of galactinol synthase and raffinose synthase in desiccation tolerance acquisition in developing Arabidopsis seeds.

Raffinose family oligosaccharides (RFOs) accumulate during seed development, and have been thought to be associated with the acquisition of desiccation tolerance (DT) by seeds. Here, comprehensive approaches were adopted to evaluate the changes of DT in developing Arabidopsis seeds of wild type, overexpression (OX-AtGS1/GS2/RS5), and mutant lines by manipulating the expression levels of the GALACTINOL SYNTHASE (GS) and RAFFINOSE SYNTHASE (RS) genes. Our results indicate that seeds of the double mutant (gs1, gs2) and rs5 delayed the timing of DT acquisition as compared to wild type. Subsequent detection confirmed that seeds from OX-AtGS1/GS2 plants with high levels of galactinol, raffinose, and stachyose, and OX-AtRS5 plants possess more raffinose and stachyose but less galactinol compared to wild type. These lines all showed greater germination percentage and shorter time to 50% germination after desiccation treatment at 11 and 15 days after flower (DAF). Further analysis revealed that the role of RFOs is time limited and mainly affects the middle stage (9-16 DAF) of seed development by enhancing seed viability and the ratio of GSH to GSSH in cells, but there is no significant difference in DT of mature seeds. In addition, RFOs could reduce damage to seeds caused by oxidative stress. We conclude that GALACTINOL SYNTHASE and RAFFINOSE SYNTHASE play important roles in DT acquisition during Arabidopsis seed development, and that galactinol and RFOs are crucial protective compounds in the response of seeds to desiccation stress.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app