Add like
Add dislike
Add to saved papers

Inhibitor of Striatal-Enriched Protein Tyrosine Phosphatase, 8-(Trifluoromethyl)-1,2,3,4,5-Benzopentathiepin-6-Amine hydrochloride (TC-2153), Produces Antidepressant-Like Effect and Decreases Functional Activity and Protein Level of 5-HT 2A Receptor in the Brain.

Neuroscience 2018 December 2
The serotoninergic 5-HT2A receptor is involved in the mechanism of depression and antidepressant drugs action. Earlier we showed that striatal-enriched protein tyrosine phosphatase (STEP) inhibitor - 8-(trifluoromethyl)-1,2,3,4,5-benzopentathiepin-6-amine hydrochloride (TC-2153) affects both the brain serotoninergic system and the brain-derived neurotropic factor that are known to be involved in the psychopathology of depression. In the present study we investigated the effects of chronic TC-2153 administration on behavior in the standard battery of tests as well as the effects of acute and chronic TC-2153 treatment on the brain 5-HT2A receptors in mice. We obtained a prominent antidepressant-like effect of chronic TC-2153 treatment in the forced swim test without any adverse side effects on locomotor activity, anxiety, exploration, motor skill and obsessive-compulsive-like behavior. Moreover, both acute and chronic TC-2153 administration inhibited the functional activity of 5-HT2A receptors estimated by the number of 2,5-dimethoxy-4-iodoamphetamine (DOI, agonist of 5-HT2A receptors)-induced head-twitches. TC-2153 treatment also attenuated the DOI-induced c-fos expression in cortical and hippocampal neurons and reduced the 5-HT2A receptor protein level in the hippocampus and frontal cortex, but not in the striatum. Taken together, our combined data demonstrate that the antidepressant effect of STEP inhibitor TC-2153 could be mediated by its inhibitory properties towards the 5-HT2A receptor-mediated signaling.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app