Add like
Add dislike
Add to saved papers

A METHOD FOR QUANTIFICATION OF CALPONIN EXPRESSION IN MYOEPITHELIAL CELLS IN IMMUNOHISTOCHEMICAL IMAGES OF DUCTAL CARCINOMA IN SITU.

Ductal carcinoma in situ (DCIS) is breast cancer confined within mammary ducts, surrounded by an intact myoepithelial cell layer that prevents local invasion. A DCIS diagnosis confers increased lifetime risk of developing invasive breast cancer (IBC) and results in surgical excision with radiation, and possibly endocrine- or chemo-therapy. DCIS is known to be over treated, with associated co-morbidities. Biomarkers are needed that delineate patients at low risk of DCIS progression from patients requiring more aggressive treatment. Investigating the role of myoepithelial cell differentiation in barrier function is anticipated to provide insight into DCIS progression and delineate between low and high risk lesions. Here, we develop a high throughput technique to assess loss of myoepithelial differentiation markers. This method facilitates automated analysis of a clinically relevant histopathologic feature, as demonstrated by a high correlation with pathologist annotation (r = 0.959), and further, contributes analytical foundations to a multiplexed immunohistochemistry (IHC) approach.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app