Add like
Add dislike
Add to saved papers

A role of Pumilio 1 in mammalian oocyte maturation and maternal phase of embryogenesis.

Background: RNA binding proteins play a pivotal role during the oocyte-to-embryo transition and maternal phase of embryogenesis in invertebrates, but their function in these processes in mammalian systems remain largely understudied.

Results: Here we report that a member of the Pumilio/FBF family of RNA binding proteins in mice, Pumilio 1 ( Pum 1), is a maternal effect gene. The absence of maternal PUM1 in the oocyte does not affect meiotic maturation but leads to abnormal preimplantation development. Furthermore, genome-wide transcriptome analysis of oocytes and embryos revealed that there is a concomitant perturbation of the mRNA milieu. Of note, putative PUM1 mRNA targets were equally perturbed as non-direct targets, which indicates that PUM1 regulates the stability of maternal mRNAs both directly and indirectly. We show Cdk1 mRNA, a known PUM1 target essential for meiosis and preimplantation development, is not degraded appropriately during meiosis, leading to an increase in CDK1 protein in mature oocytes, which indicates that PUM1 post-transcriptionally regulates Cdk1 mRNA; this could partially explain the observed abnormal preimplantation development. Furthermore, our results show that maternal and zygotic PUM1 are required for postnatal survival.

Conclusions: These findings indicate that PUM1 is essential in the process of cytoplasmic maturation and developmental competence of the oocyte. These results reveal an important function of maternal PUM1 as a post-transcriptional regulator during mammalian embryogenesis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app