Add like
Add dislike
Add to saved papers

Synergistic roles of acyl-CoA binding protein (ACBP1) and sterol carrier protein 2 (SCP2) in Toxoplasma lipid metabolism.

Cellular Microbiology 2018 October 27
Toxoplasma gondii relies on apicoplast-localized FASII pathway and endoplasmic reticulum-associated fatty acid elongation pathway for the synthesis of fatty acids, which flow through lipid metabolism mainly in the form of long-chain acyl-CoA (LCACoAs) esters. Functions of Toxoplasma acyl-CoA transporters in lipid metabolism remain unclear. Here, we investigated the roles of acyl-CoA-binding protein (TgACBP1) and a sterol carrier protein-2 (TgSCP2) as cytosolic acyl-CoA transporters in lipid metabolism. The fluormetric binding assay and yeast complementation confirmed the acyl-CoA binding activities of TgACBP1 and TgSCP2, respectively. Disruption of either TgACBP1 or TgSCP2 caused no obviously phenotypic changes, while double disruption resulted in defects in intracellular growth and virulence to mice. Gas chromatography coupled with mass spectrometry (GC-MS) results showed that TgACBP1 or TgSCP2 disruption alone led to decreased abundance of C18:1, while double disruption resulted in reduced abundance of C18:1, C22:1 and C24:1. 13 C labeling assay combined with GC-MS showed that double disruption of TgACBP1 and TgSCP2 led to reduced synthesis rates of C18:0, C22:1 and C24:1. Furthermore, high performance liquid chromatography coupled with high resolution mass spectrometry (HPLC-HRMS) was used for lipidomic analysis of parasites and indicated that loss of TgACBP1 and TgSCP2 caused serious defects in production of glycerides and phospholipids. Collectively, TgACBP1 and TgSCP2 play synergistic roles in lipid metabolism in T. gondii.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app