JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Bimetallic Electrocatalysts for CO 2 Reduction.

The increasing concentration of CO2 in the atmosphere has caused various environmental issues. Utilizing CO2 as the carbon feedstock to replace traditional fossil sources in commodity chemical production is a potential solution to reduce CO2 emissions. Electrochemical reduction of CO2 has attracted much attention because it not only converts CO2 into a variety of useful chemicals under mild reaction conditions, but also can be powered by renewable electricity at remote locations. From this review article, we summarize recent literature on the topic of bimetallic electrocatalysts for CO2 reduction. Both selectivity and activity of bimetallic catalysts strongly depend on their compositions and surface structures. Tuning the properties of a bimetallic catalyst could result in a wide range of products, including carbon monoxide, hydrocarbons, carboxylate and liquid oxygenates. By reviewing recent research efforts in the field of bimetallic electrocatalysts for CO2 reduction, we aim to provide the community with a timely overview of the current status of bimetallic CO2 electrocatalysts and to stimulate new ideas to design better catalysts for more efficient CO2 electrolysis processes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app