JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Lignin polymerization: how do plants manage the chemistry so well?

The final step of lignin biosynthesis is the polymerization of monolignols in apoplastic cell wall domains. In this process, monolignols secreted by lignifying cells, or occasionally neighboring non-lignifying and/or other lignifying cells, are activated by cell-wall-localized oxidation systems, such as laccase/O2 and/or peroxidase/H2 O2 , for combinatorial radical coupling to make the final lignin polymers. Plants can precisely control when, where, and which types of lignin polymers are assembled at tissue and cellular levels, but do not control the polymers' exact chemical structures per se. Recent studies have begun to identify specific laccase and peroxidase proteins responsible for lignin polymerization in specific cell types and during different developmental stages. The coordination of polymerization machinery localization and monolignol supply is likely critical for the spatio-temporal patterning of lignin polymerization. Further advancement in this research area will continue to increase our capacity to manipulate lignin content/structure in biomass to meet our own biotechnological purposes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app