JOURNAL ARTICLE
META-ANALYSIS
Add like
Add dislike
Add to saved papers

Resistance training induced changes in strength and specific force at the fiber and whole muscle level: a meta-analysis.

PURPOSE: Considerable debate exists as to whether increases in strength that occur with resistance exercise are the result of increases in muscle size. Most studies have attempted to answer this question using assessments of whole muscle size and voluntary muscle strength, but examining changes at the individual muscle fiber level may also provide some insight. The purpose of this meta-analysis was to compare adaptations at the whole muscle and individual fiber level.

METHODS: A meta-analysis was conducted in February, 2018 including all previously published papers and was analyzed using a random effects model.

RESULTS: There were no differences (p = 0.88) when comparing hypertrophy at the whole muscle (4.6%) and individual fiber level (7.0%), but significantly larger (p < 0.001) strength gains were observed at the whole muscle level (43.3%) relative to the individual fiber (19.5%). Additionally, there was an increase in the specific tension of type 1 muscle fibers (p = 0.013), but not type 2 muscle fibers (p = 0.23) which was driven by similar increases in strength (type 1: 17.5%, type 2A: 17.7%), despite differences in muscle size (type 1: 6.7%, type 2A: 12.1%).

CONCLUSION: These results support the hypothesis that the neural adaptations play a large role in increasing isotonic whole muscle strength, but also demonstrate that an improvement in specific tension of type 1 muscle fibers is present. These results would suggest that some mechanism intrinsic to the muscle fiber, and independent of muscle growth, may also be contributing to strength increases in response to resistance exercise providing an avenue for future research.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app