Add like
Add dislike
Add to saved papers

HOXC10 regulates osteogenesis of mesenchymal stromal cells through interaction with its natural antisense transcript lncHOXC-AS3.

Stem Cells 2018 October 24
The characteristics of mesenchymal stromal cells (MSCs) which derived from multiple myeloma (MM) patients is typically impaired in osteogenic differentiation. However, the underlying molecular mechanisms need to be further investigated. Long noncoding RNAs (lncRNAs) are emerging as critical regulation molecules in oncogenic pathways. In this study, we identified that bioactive lncRNA HOXC-AS3, which is transcribed in opposite to HOXC10, was presented in MSCs derived from bone marrow (BM) of MM patients (MM-MSCs). HOXC-AS3 was able to interact with HOXC10 at the overlapping parts and this interaction increased HOXC10 stability, then promoted its expression, conferring osteogenesis repression to MM-MSCs. In mouse models, intravenously administered siHOXC-AS3 was proven to be effective in prevention of bone loss, sustained by both anticatabolic activities and bone-forming. These data showed that lncHOXC-AS3 was required for osteogenesis in BM-MSCs by enhancing HOXC10 expression. Our finding thus unveils a novel insight for the potential clinical significance of lncRNA HOXC-AS3 as a therapeutic target for bone disease in MM. © AlphaMed Press 2018.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app