JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Measurement and modelling of primary sex ratios for species with temperature-dependent sex determination.

For many oviparous animals, incubation temperature influences sex through temperature-dependent sex determination (TSD). Although climate change may skew sex ratios in species with TSD, few available methods predict sex under natural conditions, fewer still are based on mechanistic hypotheses of development, and field tests of existing methods are rare. We propose a new approach that calculates the probability of masculinization (PM) in natural nests. This approach subsumes the mechanistic hypotheses describing the outcome of TSD, by integrating embryonic development with the temperature-dependent reaction norm for sex determination. Further, we modify a commonly used method of sex ratio estimation, the constant temperature equivalent (CTE), to provide quantitative estimates of sex ratios. We test our new approaches using snapping turtles ( Chelydra serpentina ). We experimentally manipulated nests in the field, and found that the PM method is better supported than the modified CTE, explaining 69% of the variation in sex ratios across 27 semi-natural nests. Next, we used the PM method to predict variation in sex ratios across 14 natural nests over 2 years, explaining 67% of the variation. We suggest that the PM approach is effective and broadly applicable to species with TSD, particularly for forecasting how sex ratios may respond to climate change. Interestingly, we also found that the modified CTE explained up to 64% of variation in sex ratios in a Type II TSD species, suggesting that our modifications will be useful for future research. Finally, our data suggest that the Algonquin Park population of snapping turtles possesses resilience to biased sex ratios under climate change.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app