Add like
Add dislike
Add to saved papers

Brief Report: Innate lymphoid cells and T-cells contribute to the IL-17A signature detected in the synovial fluid of patients with Juvenile Idiopathic Arthritis.

Arthritis & Rheumatology 2018 October 23
OBJECTIVE: Evidence suggests that aberrant function of innate lymphoid cells (ILC), whose functional and transcriptional profile overlap with T helper (Th) cell subsets, contribute to immune-mediated pathologies. To date, analysis of Juvenile Idiopathic Arthritis (JIA) immune-pathology has concentrated on the contribution of CD4+ T-cells; we have previously identified an expansion of Th17 cells within the synovial fluid (SF) of JIA patients. Here, we extend this analysis to investigate a role for ILC and other IL-17 producing T-cell subsets.

METHODS: ILC and CD3+ T-cell subsets were defined in peripheral blood mononuclear cells (PBMC) (healthy adult, healthy child and JIA patients) and JIA SF mononuclear cells (SFMC) using flow cytometry. Defined subsets in SFMC were correlated with clinical measures including physician's visual analogue scale (VAS), active joint count and erythrocyte sedimentation rate (ESR). Transcription factor and cytokine profiles of sorted ILC were assessed by qPCR.

RESULTS: Group 1 ILC (ILC1), NKp44-group 3 ILC (NCR-ILC3) and NKp44+group 3 ILC (NCR+ILC3) were enriched in the JIA-SFMC compared to PBMC, which corresponded with an increase in transcripts for TBX21, IFNG and IL17A. Of the ILC subsets, NCR-ILC3 frequency in JIA-SFMC displayed the strongest positive association with clinical measures which was mirrored by an expansion in IL-17A+CD4+, IL-17A+CD8+ and IL-17A+γδ T-cells.

CONCLUSION: We demonstrate that the strength of the IL-17A signature in JIA-SFMC is determined by multiple lymphoid cell-types, including NCR-ILC3, IL-17A+CD4+, IL-17A+CD8+ and IL-17A+γδ T-cells. These observations may have important implications for the development of stratified therapeutics. This article is protected by copyright. All rights reserved.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app