Add like
Add dislike
Add to saved papers

Cystathionine-γ-lyase expression is associated with mitochondrial respiration during sepsis-induced acute kidney injury in swine with atherosclerosis.

BACKGROUND: Sepsis is associated with disturbed glucose metabolism and reduced mitochondrial activity and biogenesis, ultimately leading to multiple organ dysfunction, e.g., acute kidney injury (AKI). Cystathionine-γ-lyase (CSE), the major cardiovascular source of endogenous H2 S release, is implicated in the regulation of glucose metabolism and mitochondrial activity through a PGC1α-dependent mechanism, and critical for kidney function. Atherosclerosis is associated with mitochondrial dysfunction and reduced CSE expression. Thus, the aim of this post hoc study was to test the hypothesis whether there is an interplay between CSE expression and kidney dysfunction, mitochondrial activity, and oxidative/nitrosative stress in porcine septic AKI with underlying coronary artery disease.

METHODS: This study is a post hoc analysis of material from anesthetized and instrumented swine with a high fat diet-induced hypercholesterolemia and atherosclerosis undergoing faecal peritonitis-induced septic shock or sham procedure and intensive care (comprising fluid resuscitation and continuous i.v. noradrenaline (NoA) infusion) for 24 h. Glucose metabolism was quantified from blood 13 C6 -glucose and expiratory 13 CO2 /12 CO2 isotope enrichment during 13 C6 -glucose infusion. Mitochondrial activity was determined by high-resolution respirometry. CSE and PGC1α expression, as well as nitrotyrosine formation and albumin extravasation, were quantified by immunohistochemistry of formalin-fixed kidney paraffin sections.

RESULTS: Sepsis was associated with lactic acidosis (p = 0.004) and AKI (50% fall of creatinine clearance (CrCl), p = 0.019). While both whole-body glucose production (p = 0.004) and oxidation (p = 0.006) were increased, kidney tissue mitochondrial respiration was reduced (p = 0.028), coinciding with decreased CSE (p = 0.003) and PGC1α (p = 0.003) expression. Albumin extravasation (p = 0.011) and nitrotyrosine formation (p = 0.008) were increased in septic kidneys.

CONCLUSIONS: Sepsis-induced AKI is associated with disturbed mitochondrial respiration and biogenesis, which may be aggravated by oxidative and nitrosative stress. Our results confirm previous data in murine septic shock and porcine hemorrhage and resuscitation on the crucial role of CSE for barrier integrity and kidney function.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app