Add like
Add dislike
Add to saved papers

Hydroxylated Single-Walled Carbon Nanotubes Inhibit Aβ 42 Fibrillogenesis, Disaggregate Mature Fibrils, and Protect against Aβ 42 -Induced Cytotoxicity.

The fibrillogenesis of amyloid-β protein (Aβ) is considered a crucial factor in the pathogenesis of Alzheimer's disease (AD). Hence, inhibiting Aβ fibrillogenesis is regarded as the primary therapeutic strategy for the prevention and treatment of AD. However, the development of effective inhibitors against Aβ fibrillogenesis has faced significant challenges. Previous studies have shown that pristine single-walled carbon nanotubes (SWNTs) can inhibit fibrillogenesis of some amyloid proteins. However, the poor dispersibility of SWNTs in an aqueous environment greatly hinders their inhibitory efficacy. Here, we examined the inhibitory activity of hydroxylated SWNTs (SWNT-OH) on the aggregation and cytotoxicity of Aβ42 using thioflavin T (ThT) fluorescence, atomic force microscopy (AFM), cellular viability assays, and molecular dynamics (MD) simulations. ThT and AFM results showed that SWNT-OH inhibits Aβ42 fibrillogenesis and disaggregates preformed amyloid fibrils in a dose-dependent manner. Furthermore, the ratio of hydroxyl groups in SWNT-OH is crucial for their effect against Aβ42 aggregation. SWNT-OH exerted cytoprotective effects against Aβ42 fibrillation-induced cytotoxicity. The results of free-energy decomposition studies based on MD simulations revealed that nonpolar interactions, and especially van der Waals forces, contributed most of the free energy of binding in the SWNT-OH-Aβ complex. Two regions of the Aβ pentamer were identified to interact with SWNT-OH, spanning H13-Q15 and V36-G38. The findings presented here will contribute to a comprehensive understanding of the inhibitory effect of hydroxylated nanoparticles against Aβ fibrillogenesis, which is critical for the search for more effective agents that can counteract amyloid-mediated pathologies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app