Add like
Add dislike
Add to saved papers

Leveraging electronic health records to assess the role of ADRB2 single nucleotide polymorphisms in predicting exacerbation frequency in asthma patients.

Asthma is the leading chronic disease in children. Several studies have identified genetic biomarkers associated with susceptibility and severity in both adult and pediatric cases. In this study, we evaluated outcomes in 400 African American and European American pediatric cases all of whom were regular users of inhaled corticosteroids. Patients were stratified by genotype using two single nucleotide polymorphisms in the β-2-adrenergic receptor (ADRB2) gene - rs1042713 and rs1042714, previously associated with asthma outcome. These correspond to nonsynonymous single nucleotide polymorphisms at positions 16 [arginine to glycine (Arg16Gly); rs1042713] and 27 [glutamic acid to glutamine (Glu27Gln); rs1042714], which are relatively common (minor allele frequencies ∼40-50%), and have been well characterized in asthma pharmacogenetics. We controlled for adherence to the National Heart, Lung and Blood Institute guidelines using deep mining of electronic health record data to determine treatment course. We found no significant effect for rs1042713 (Arg16Gly) but did identify an effect for rs1042714, where participants homozygous for Gln27 had increased exacerbations while taking inhaled corticosteroids in comparison with those who were either heterozygous or homozygous for Glu27. This is consistent with previous studies and demonstrates for the first time that the Glu27 variant in the ADRB2 gene is associated with increased frequencies of asthma exacerbations. Moreover, this study also lends an important proof-of-principle on how electronic health records linked to genotype can be efficiently and systematically mined to delineate health outcomes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app