Add like
Add dislike
Add to saved papers

SLC27A2 regulates miR-411 to affect chemo-resistance in ovarian cancer.

Neoplasma 2018 November 16
Although platinum-based chemotherapies have long been used as standard treatment in ovarian cancer, cisplatin resistance is a major problem that restricts its use. Herein, we investigate the biological function of SLC27A2 and its underlying mechanisms in regulating chemo-resistance in ovarian cancer. The findings show that SLC27A2 down-regulation in primary ovarian cancer tissues correlates with chemo-resistance and poor patient survival in our patient cohort. Significantly, we demonstrate that up-regulation of SLC27A2 by lentivirus-mediated p-SLC27A2 sensitizes ovarian cancer cells to cisplatin in vitro and in vivo via apoptosis. Mechanistic investigation reveals that miR-411 is the most strikingly over-expressed gene in response to ectopic expression of SLC27A2, but under-expressed in recurrent ovarian cancer tissues. Lower miR-411 expression contributes to ovarian cancer chemo-resistance in vitro and in vivo. Furthermore, SLC27A2 directly binds specific sites in the miR-411 promoter region and promoter activity decreases after mutation of putative SLC27A2-binding sites. This indicates that SLC27A2 is required for the transcriptional induction of miR-411. The luciferase assays also confirm that miR-411 directly targets ABCG2 in ovarian cancer, and overall findings establish the SLC27A2-miR-411-ABCG2 pathway in the regulation of ovarian cancer chemo-resistance with potential therapeutic applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app