Add like
Add dislike
Add to saved papers

Synaptic Plasticity and Synchrony in the Anterior Cingulate Cortex Circuitry: A Neural Network Approach to Causality of Chronic Visceral Pain and Associated Cognitive Deficits.

Human brain imaging studies have demonstrated the importance of cortical neuronal networks in the perception of pain in patients with functional bowel disease such as irritable bowel syndrome (IBS).Studies have identified an enhanced response in the anterior cingulate cortex (ACC) to colorectal distension in viscerally hypersensitive (VH) rats. Electrophysiological recordings show long-lasting potentiation of local field potential (LFP) in the medial thalamus (MT)-ACC synapses in VH rats. Theta burst stimulation in the MT reliably induced long-term potentiation (LTP) in the MT-ACC pathway in normal rats, but was occluded in the VH state. Further, repeated tetanization of MT increased ACC neuronal activity and visceral pain responses of normal rats, mimicking VH rats. These data provide conclusive evidence that chronic visceral pain is associated with alterations of synaptic plasticity in the ACC circuitry. The ACC synaptic strengthening may engage signal transduction pathways that are in common with those activated by electrical stimulation, and serve as an attractive cellular model of functional visceral pain.Evidences have shown that most patients with IBS have psychiatric comorbidity. Using rat gambling task (RGT), we discovered an impairment of decision-making behavior in VH rats. Electrophysiological study showed a reduction of LTP in the basolateral amygdala (BLA)-ACC synapses in VH rats. Multiple-electrode array recordings of local field potential (LFP) in freely behaving rats revealed that chronic visceral pain led to disruption of ACC spike timing and BLA local theta oscillation. Finally, cross-correlation analysis revealed that VH was associated with suppressed synchronization of theta oscillation between the BLA and ACC, indicating reduced neuronal communications between these two regions. These data suggest that functional disturbances in BLA-ACC neural circuitry may be relevant causes for the deficits in decision-making in chronic pain state.The viscero-sensation is a faculty of perception that does not depend upon any outward sense, but acts to influence the elicited behavioral response. Clinically, vagus nerve stimulation (VNS) has shown several beneficial effects for mood enhancement. Our recent study characterized that VNS facilitates decision-making and unveiled several important roles for VNS in regulating LFP and spike phases, as well as enhancing spike-phase coherence between key brain areas involved in cognitive performance.It is conceivable that the visceral pain experience may be better explained as a biopsychosocial model of pain and reflected in a matrix of neuronal structures. Understanding of desynchrony in the ACC network and cognitive deficits is likely to provide exciting and powerful future treatment for chronic visceral pain related debilitating mood, anxiety, and cognitive disorders.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app