Add like
Add dislike
Add to saved papers

Self-Assembled Porphyrazine Nucleosides on DNA Templates: Highly Fluorescent Chromophore Arrays and Sizing Forensic Tandem Repeat Sequences.

The formation of chromophore arrays using a DNA templating approach leads to the creation of supramolecular assemblies, where the optical properties of the overall system can be fine-tuned to a large extent. In particular, porphyrin derivatives have been shown to be versatile building blocks; mostly covalent chemistry was used for embedding the units into DNA strands. Self-assembly of porphyrin modified nucleosides, on the other hand, has not been investigated as a simplified approach. We report on the synthesis of a magnesium(II) tetraaza porphine (MgTAP) coupled to deoxyuridine, and array formation on DNA templates which contain well-defined oligo(dA) segments showing strong fluorescence enhancement which is significantly larger than that with a Zn-porphyrin. The use of the deep-eutectic solvent glycholine is essential for successful assembly formation. The system allows for sizing of short tandem repeat markers with multiple adenosines, thus the concept could be adaptable to in vitro forensic DNA profiling with a suitable set of different chromophores on all nucleosides.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app