Add like
Add dislike
Add to saved papers

True phase quantitative susceptibility mapping using continuous single-point imaging: a feasibility study.

PURPOSE: In this study, we explore the feasibility of a new imaging scheme for quantitative susceptibility mapping (QSM): continuous single-point imaging (CSPI), which uses a pure phase encoding strategy to achieve true phase imaging and improve QSM accuracy.

METHODS: The proposed CSPI is a modification of conventional SPI to allow acquisition of multiple echoes in a single scan. Immediately following a phase encoding gradient, the free induction decay is continuously sampled with extremely high temporal resolution to obtain k-space data at a fixed spatial frequency (i.e., at a fixed k-space coordinate). By having near-0 readout duration, CSPI results in a true snapshot of the transverse magnetization at each TE. Additionally, parallel imaging with autocalibration is utilized to reduce scan time, and an optional temporal averaging strategy is presented to improve signal-to-noise ratio for objects with low proton density or short T2* decay. The reconstructed CSPI images were input to a QSM framework based on morphology enabled dipole inversion.

RESULT: In an experiment performed using iron phantoms, susceptibility estimated using CSPI showed high linearity (R2 = 0.9948) with iron concentration. Additionally, reconstructed CSPI phase images showed much reduced ringing artifact compared with phase images obtained using a frequency encoding strategy. In an ex vivo experiment performed using human tibia samples, estimated susceptibilities ranged from -1.6 to -2.1 ppm, in agreement with values reported in the literature (ranging from -1.2 to -2.2 ppm).

CONCLUSION: We have demonstrated the feasibility of using CSPI to obtain true phase images for QSM.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app