Add like
Add dislike
Add to saved papers

Stress-induced modulation of volume-regulated anions channels in human alveolar carcinoma cells.

Physiological Reports 2018 September
Shift in the cellular homeostasis of the organic osmolyte taurine has been associated with dysregulation of the volume-regulated anion channel (VRAC) complex, which comprises leucine-rich repeat-containing family 8 members (LRRC8A-E). Using SDS-PAGE, western blotting, qRT-PCR, and tracer technique ([3 H]taurine) we demonstrate that reactive oxygen species (ROS) and the cell growth-associated kinases Akt/mTOR, play a role in the regulation of VRAC in human alveolar cancer (A549) cells. LRRC8A is indispensable for VRAC activity and long-term exposure to hypoosmotic challenges and/or ROS impairs VRAC activity, not through reduction in total LRRC8A expression or LRRC8A availability in the plasma membrane, but through oxidation/inactivation of kinases/phosphatases that control VRAC activity once it has been instigated. Pursuing Akt signaling via the serine/threonine kinase mTOR, using mTORC1 inhibition (rapamycin) and mTORC2 obstruction (Rictor knockdown), we demonstrate that interference with the PI3K-mTORC2-Akt signaling-axes obstructs stress-induced taurine release. Furthermore, we show that an increased LRRC8A expression, following exposure to cisplatin, ROS, phosphatase/lipoxygenase inhibitors, and antagonist of CysLT1-receptors, correlates an increased activation of the proapoptotic transcription factor p53. It is suggested that an increase in LRRC8A protein expression could be taken as an indicator for cell stress and limitation in VRAC activity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app