Add like
Add dislike
Add to saved papers

Unraveling the mechanism of l-gulonate-3-dehydrogenase inhibition by ascorbic acid: Insights from molecular modeling.

l-Gulonate dehydrogenase (GuDH) is a crucial enzyme in the non-phosphorylated sugar metabolism or glucuronate-xylulose (GX) pathway. Some naturally occurring compounds inhibit GuDH. Ascorbic acid is one of such inhibitors for GuDH. However, the exact mechanism by which ascorbic acid inhibits GuDH is still unknown. In this study, we try to investigate GuDH inhibition using computational approaches by generating a model for buffalo GuDH. We used this model to perform blind dockings of ascorbic acid to GuDH. Some docked conformations of ascorbic acid bind near Asp39 and have steric clashes with crystal structure conformation of NADH. To assess the dynamic stability of the GuDH-ascorbic acid complex, we performed six molecular dynamics simulations for GuDH, three each in its free form and in complex with ascorbic acid for 50 ns, to obtain 300 ns of trajectories in total. During the simulations, ascorbic acid interacted with several residues nearby Asp39. As Asp39 is an important residue for NADH binding and specificity, the interaction of ascorbic acid near Asp39 hinders further NADH binding and ultimately affects the enzymatic functioning of GuDH. In this study, we analyze these interactions between ascorbic acid and GuDH. Our analysis reveals novel details on the mechanism of GuDH inhibition by ascorbic acid.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app