Add like
Add dislike
Add to saved papers

Dosimetry of a Carbon Dioxide Laser for Black Tattoo Removal in a Rat Model.

OBJECTIVE: To determine the optimal parameters of power, energy, and time for the application of a carbon dioxide laser for Tribal Black ink tattoo removal.

BACKGROUND DATA: The use of antiquated techniques to remove tattoos demonstrates the difficulty of making advances in this field. Studies by the American Society for Dermatologic Surgery have shown that 5% of the global population has at least one tattoo on the body, with 10% of them wanting a tattoo to be removed. Laser removal has been studied and improved as a less invasive and safer method of surgical removal; however, the ideal dosimetry is not yet established.

MATERIALS AND METHODS: Thirty-three male Wistar rats were anesthetized and tattooed in the dorsal region in a quadrangular manner. The rats were distributed under low/null luminosity for 4 months into three equal and random groups for the application of the laser, namely, G1 (P = 0.6 W, Et = 0.9 J), G2 (P = 0.8 W, Et = 1, 2 J), and G3 (P = 1 W, Et = 1.5 J), with the application time standardized to 0.15 sec with 10 passes per application. The procedure was repeated at intervals of 4 weeks until 10 cycles of laser application were completed. The images were studied using the ImageJ program and histological analysis and subjected to the one-way ANOVA test for Tukey's multiple comparison post-test.

RESULTS: We observed a significant difference between groups 1 and 3 and between groups 2 and 3.

CONCLUSIONS: The laser with the parameters of P = 1 W, Et = 1.5 J, and t = 0.15 sec yields better Tribal Black ink removal results.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app