Add like
Add dislike
Add to saved papers

The Control of Meiotic Recombination in the Human Genome.

Meiotic recombination plays a key role in reshuffling haplotypes in human populations and thus affects evolution profoundly. However, our understanding of recombination dynamics is largely limited to descriptions of variation in populations and families. Higher-resolution analysis (≤ 0.0001 cM) of de novo recombination events in human sperm DNA has revealed clustering into very narrow hotspots (1-2 kb) that generally coincide with abrupt breakdown of linkage disequilibrium. Recent findings have highlighted an unexpected molecular control of the distribution of meiotic double-strand breaks (DSBs) in mammals by a rapidly evolving gene in trans, PR-domain-containing 9 (PRDM9), and specific DNA sequence motifs in cis. In addition, the understanding of new regulators in DSB repair processes has allowed the delineation of recombination pathways that have two major outcomes, cross-overs and non-cross-overs, which have distinct mechanistic roles and consequences for genome evolution. Further molecular studies are needed to gain information about how hotspots originate, function, and evolve.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app