Add like
Add dislike
Add to saved papers

Tunable upconversion in a nanocrystal-organic molecule hybrid: reabsorption vs. resonant energy transfer.

Organic semiconductors, such as polycyclic aromatic hydrocarbons, are typically not responsive to near infrared (NIR) light due to their relatively large bandgaps. Here, we show that the NIR light at 980 nm can be efficiently converted to broadband visible upconversion (UC) emission by rubrene molecules in a solution dispersed with upconversion nanoparticles (UCNPs). Spectroscopic characterizations indicate that the sensitization of emission by rubrene molecules strongly depends on the location of the 4f levels of Er3+ ions and the interplay between reabsorption and Förster-type energy transfer. Even for the solution with the highest rubrene concentration (>1 mg mL-1 ), energy transfer by reabsorption of UC emission from the UCNPs is the dominant process, and the radiationless resonant energy transfer process is weak, as the separation between most rubrene molecules and NCs is far larger than the Förster distance. The results of this work could be of particular interest for the development of organic-inorganic hybrid systems for NIR light harvesting and detection.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app