Add like
Add dislike
Add to saved papers

Optimization of Variance Reduction Techniques used in EGSnrc Monte Carlo Codes.

Monte Carlo (MC) simulations are often used in calculations of radiation transport to enable accurate prediction of radiation-dose, even though the computation is relatively time-consuming. In a typical MC simulation, significant computation time is allocated to following non-important events. To address this issue, variance reduction techniques (VRTs) have been suggested for reducing the statistical variance for the same computation time. Among the available MC simulation codes, electron gamma shower (National Research Council of Canada) (EGSnrc) is a general-purpose coupled electron-photon transport code that also features an even-handed, rich set of VRTs. The most well-known VRTs are the photon splitting, Russian roulette (RR), and photon cross-section enhancement (XCSE) techniques. The objective of this work was to determine the optimal combination of VRTs that increases the simulation speed and the efficiency of simulation, without compromising its accuracy. Selection of VRTs was performed using EGSnrc MC User codes, such as cavity and egs_chamber, for simulating various ion chamber geometries using 6 MV photon beams and 1.25 MeV 60 Co photon beams. The results show that the combination of XCSE and RR yields the highest efficiency for ion-chamber dose calculations inside a 30 cm × 30 cm × 30 cm water phantom. Hence, properly selecting a different VRT without altering the underlying physics increases the efficiency of MC simulations for ion-chamber dose calculation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app