JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Curli-Containing Enteric Biofilms Inside and Out: Matrix Composition, Immune Recognition, and Disease Implications.

Biofilms of enteric bacteria are highly complex, with multiple components that interact to fortify the biofilm matrix. Within biofilms of enteric bacteria such as Escherichia coli and Salmonella species, the main component of the biofilm is amyloid curli. Other constituents include cellulose, extracellular DNA, O antigen, and various surface proteins, including BapA. Only recently, the roles of these components in the formation of the enteric biofilm individually and in consortium have been evaluated. In addition to enhancing the stability and strength of the matrix, the components of the enteric biofilm influence bacterial virulence and transmission. Most notably, certain components of the matrix are recognized as pathogen-associated molecular patterns. Systemic recognition of enteric biofilms leads to the activation of several proinflammatory innate immune receptors, including the Toll-like receptor 2 (TLR2)/TLR1/CD14 heterocomplex, TLR9, and NLRP3. In the model of Salmonella enterica serovar Typhimurium, the immune response to curli is site specific. Although a proinflammatory response is generated upon systemic presentation of curli, oral administration of curli ameliorates the damaged intestinal epithelial barrier and reduces the severity of colitis. Furthermore, curli (and extracellular DNA) of enteric biofilms potentiate the autoimmune disease systemic lupus erythematosus (SLE) and promote the fibrillization of the pathogenic amyloid α-synuclein, which is implicated in Parkinson's disease. Homologues of curli-encoding genes are found in four additional bacterial phyla, suggesting that the biomedical implications involved with enteric biofilms are applicable to numerous bacterial species.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app