Add like
Add dislike
Add to saved papers

Chemical inhibition of HSP90 inhibits TNF-α mediated proliferation and induces apoptosis in human rheumatoid arthritis fibroblast-like synoviocytes.

Rheumatoid arthritis fibroblast-like synoviocytes (RAFLS) proliferate abnormally and resist apoptosis. Geldanamycin (GA) and other HSP90 inhibitors have emerged as promising therapeutic agents that inhibited cancer cell growth. In this study, we explored the effects of HSP90 inhibitor, GA, on tumor necrosis factor (TNF)-α-induced proliferation and apoptosis of RAFLS, and the underlying mechanism. Human RAFLS was isolated from the knee joints of patients with RA and subjected to TNF-α treatment in combination of various concentration of GA. We found that GA dose-dependently inhibited TNF-α-induced RAFLS proliferation as measured, but promoted RAFLS apoptosis. Further mechanistic study identified that GA dose-dependently attenuated TNF-α-mediated activation of mitogen-activated protein kinases (MAPKs) and nuclear factor-kappa B (NF-κB) pathways, both of which are involved in TNF-α-mediated RAFLS proliferation. Moreover, GA-induced apoptosis and mitochondrial damage of RAFLS, as evidenced by increased Bax/Bcl-2 ratio and mitochondrial cytochrome c release, and enhanced cleavages of caspase-3, caspase-9, and poly-(ADP-ribose) polymerase. Collectively, our results revealed that chemical inhibition of HSP90 by GA suppressed TNF-α-induced proliferation of RAFLSs through the MAPK and NF-κB signaling pathways and induces RAFLS apoptosis via mitochondria-dependent pathway. These findings demonstrated for the first time that HSP90 inhibition in RAFLS could be therapeutic beneficial for RA.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app