Add like
Add dislike
Add to saved papers

Effect of the selective 5-HT 2A receptor antagonist EMD-281,014 on L-DOPA-induced abnormal involuntary movements in the 6-OHDA-lesioned rat.

L-3,4-Dihydroxyphenylalanine (L-DOPA) is the most effective therapy for motor symptoms of Parkinson's disease (PD); however, with repeated administration, as many as 94% of PD patients develop complications such as L-DOPA-induced dyskinesia. We previously demonstrated that EMD-281,014, a highly selective serotonin 2A (5-HT2A ) receptor antagonist, reduces the severity of dyskinesia in the parkinsonian marmoset, without interfering with L-DOPA anti-parkinsonian benefit. Here, we assessed the effects of EMD-281,014 on L-DOPA-induced abnormal involuntary movements (AIMs) in the 6-hydroxydopamine (6-OHDA)-lesioned rat. We first determined the pharmacokinetic profile of EMD-281,014, to administer doses leading to clinically relevant plasma levels in the behavioural experiments. Dyskinetic 6-OHDA-lesioned rats were then administered EMD-281,014 (0.01, 0.03 and 0.1 mg/kg) or vehicle in combination with L-DOPA and AIMs severity was evaluated. We also assessed the effect of EMD-281,014 on L-DOPA anti-parkinsonian action with the cylinder test. We found that the addition of EMD-281,014 (0.01, 0.03 and 0.1 mg/kg) to L-DOPA did not reduce AIMs severity (P > 0.05), when compared to vehicle. EMD-281,014 did not compromise L-DOPA anti-parkinsonian action. Our results suggest that the highly selective 5-HT2A receptor antagonist EMD-281,014 is well-tolerated by parkinsonian rats, but does not attenuate L-DOPA-induced AIMs. Our results highlight differences between rodent and primate models of PD when it comes to determining the anti-dyskinetic action of 5-HT2A receptor antagonists.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app