Add like
Add dislike
Add to saved papers

Linear-nonlinear-time-warp-poisson models of neural activity.

Prominent models of spike trains assume only one source of variability - stochastic (Poisson) spiking - when stimuli and behavior are fixed. However, spike trains may also reflect variability due to internal processes such as planning. For example, we can plan a movement at one point in time and execute it at some arbitrary later time. Neurons involved in planning may thus share an underlying time course that is not precisely locked to the actual movement. Here we combine the standard Linear-Nonlinear-Poisson (LNP) model with Dynamic Time Warping (DTW) to account for shared temporal variability. When applied to recordings from macaque premotor cortex, we find that time warping considerably improves predictions of neural activity. We suggest that such temporal variability is a widespread phenomenon in the brain which should be modeled.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app