Add like
Add dislike
Add to saved papers

The in vivo fates of plant viral nanoparticles camouflaged using self-proteins: overcoming immune recognition.

Nanoparticles offer a promising avenue for targeted delivery of therapies. To slow clearance, nanoparticles are frequently stealth-coated to prevent opsonization and immune recognition. Serum albumin (SA) has been used as a bio-inspired stealth coating. To develop this shielding strategy for clinical applications, it is critical to understand the interactions between the immune system and SA-camouflaged nanoparticles. This work investigates the in vivo processing of SA-coated nanoparticles using tobacco mosaic virus (TMV) as a model system. In comparing four different SA-formulations, the particles with high SA coverage conjugated to TMV via a short linker performed the best at preventing antibody recognition. Irrelevant of the coating chemistry, all formulations led to similar levels of TMV-specific antibodies after repeat administration in mice; importantly though, SA-specific antibodies were not detected and the TMV-specific antibodies were unable to recognize shielded SA-coated TMV. Upon uptake in macrophages, the shielding agent and nanoparticle separate, where TMV trafficked to the lysosome and SA appears to recycle. The distinct intracellular fates of the TMV carrier and SA shielding agent explain why anti-TMV but not SA-specific antibodies are generated. This work characterizes the outcomes of SA-camouflaged TMV after immune recognition, and highlights the effectiveness of SA as a nanoparticle shielding agent.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app