JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Genetic Modulation of RNA Splicing with a CRISPR-Guided Cytidine Deaminase.

Molecular Cell 2018 October 19
RNA splicing is a critical mechanism by which to modify transcriptome, and its dysregulation is the underlying cause of many human diseases. It remains challenging, however, to genetically modulate a splicing event in its native context. Here, we demonstrate that a CRISPR-guided cytidine deaminase (i.e., targeted-AID mediated mutagenesis [TAM]) can efficiently modulate various forms of mRNA splicing. By converting invariant guanines to adenines at either 5' or 3' splice sites (SS), TAM induces exon skipping, activation of alternative SS, switching between mutually exclusive exons, or targeted intron retention. Conversely, TAM promotes downstream exon inclusion by mutating cytidines into thymines at the polypyrimidine tract. Applying this approach, we genetically restored the open reading frame and dystrophin function of a mutant DMD gene in patient-derived induced pluripotent stem cells (iPSCs). Thus, the CRISPR-guided cytidine deaminase provides a versatile genetic platform to modulate RNA splicing and to correct mutations associated with aberrant splicing in human diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app