Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Computational analysis of the interactions of a novel cephalosporin derivative with β-lactamases.

BMC Structural Biology 2018 October 5
BACKGROUND: One of the main concerns of the modern medicine is the frightening spread of antimicrobial resistance caused mainly by the misuse of antibiotics. The researchers worldwide are actively involved in the search for new classes of antibiotics, and for the modification of known molecules in order to face this threatening problem. We have applied a computational approach to predict the interactions between a new cephalosporin derivative containing an additional β-lactam ring with different substituents, and several serine β-lactamases representative of the different classes of this family of enzymes.

RESULTS: The results of the simulations, performed by using a covalent docking approach, has shown that this compound, although able to bind the selected β-lactamases, has a different predicted binding score for the two β-lactam rings, suggesting that one of them could be more resistant to the attack of these enzymes and stay available to perform its bactericidal activity.

CONCLUSIONS: The detailed analysis of the complexes obtained by these simulations suggests possible hints to modulate the affinity of this compound towards these enzymes, in order to develop new derivatives with improved features to escape to degradation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app