Add like
Add dislike
Add to saved papers

B cell responses to apoptotic cells in MFG-E8-/- mice.

Defective clearance of apoptotic cells in MFG-E8 deficient mice results in lupus-like disease in the mixed B6x129, but not pure B6 background. The lack of overt autoimmunity in MFG-E8-/- B6 mice suggests that accumulation of apoptotic cells is not sufficient to break central tolerance. However, the delayed clearance of apoptotic cells in the follicles of MFG-E8-/- B6 mice provides an excellent opportunity to investigate how B cells respond to excessive apoptotic cells in the periphery under relatively non-inflammatory conditions. In MFG-E8-/- B6 mice, we found increased IgG2c production against apoptotic cells and oxidized LDL. Apoptotic cell induced antibody responses depended on MyD88 signal and T cell help. In addition, MFG-E8-/- B6 mice had enlarged MZ B cell compartments as well as an enhanced antibody response to NP-Ficoll. Moreover, a significant percentage of MZ B cells in aged MFG-E8-/- B6 mice migrated into follicles. Injecting apoptotic cells or oxidized LDL into wild type mice as well as physiological accumulation of LDL in ApoE-/- mice recapitulated the translocation of MZ B cells. To determine how MFG-E8 deficiency affects the functions of autoreactive B cells specific for nucleic acids in the periphery under non-inflammatory conditions, we utilized BCR transgenic mice to bypass central selection and compared the differentiation of TLR9 dependent anti-dsDNA 56R B cells and TLR7 dependent anti-ssRNA H564 B cells in MFG-E8-/- mice. In MFG-E8-/- 56R mice, anti-dsDNA specific 56R/Vκ38c B cells differentiated into MZ B cells but not AFCs. On the contrary, in MFG-E8-/-H564 mice, anti-ssRNA specific H564 B cells further differentiated into GC B cells and AFCs. Adoptive transfer of activated autoreactive B cells confirmed that H564 B cells were more sensitive to apoptotic cell antigens than 56R B cells. Our observations provide new insights about the MZ B cell translocation in lupus patients as well as the dichotomy of TLR9 and TLR7 signals in the pathogenesis of lupus.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app