Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Urine Metabolic Signatures of Multiple Environmental Pollutants in Pregnant Women: An Exposome Approach.

Exposure to environmental pollutants, particularly during pregnancy, can have adverse consequences on child development but little is known about the effects of pollutant mixtures on endogenous metabolism in pregnant women. We aimed to identify urinary metabolic signatures associated with low level exposure to multiple environmental pollutants in pregnant women from the INMA (INfancia y Medio Ambiente) birth cohort (Spain, N = 750). 35 chemical exposures were quantified in first trimester blood samples (organochlorine pesticides, PCBs, PFAS), in cord blood (mercury), and twice in urine at 12 and 32 weeks of pregnancy (metals, phthalates, bisphenol A). 1 H nuclear magnetic resonance (NMR) metabolic profiles of urine were acquired in the same samples as pollutants. We explored associations between exposures and metabolism through an exposome-metabolome wide association scan and multivariate O2PLS modeling. Novel and reproducible associations were found across two periods of pregnancy for three nonpersistent pollutants and across two subcohorts for four of the persistent pollutants. We found novel metabolic signatures associated with arsenic exposure: TMAO and dimethylamine possibly related to gut microbial methylamine metabolism and homarine related to fish intake. Tobacco smoke exposure was related to coffee metabolism and PCBs with 3-hydroxyvaleric acid, usually released under ketoacidosis. These findings will have implications for further understanding of maternal-fetal health, and health across the life-course.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app