Add like
Add dislike
Add to saved papers

Droplet digital PCR using HER2/EIF2C1 ratio for detection of HER2 amplification in breast cancer tissues.

Medical Oncology 2018 October 4
Breast cancers with amplification and overexpression of human epithelial growth factor receptor 2 (HER2) are associated with poor prognosis, and targeted for anti-HER2 therapy. Immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH) are currently the recommended methods to asses HER2 overexpression/amplification. Droplet digital PCR (ddPCR), a highly accurate method to quantify DNA copy number, is potentially a robust alternative for HER2 diagnostics. In the FISH assay and most of previous ddPCR reports, chromosome 17 centromere (CEP17) has been used as the reference control to determine HER2/CEP17 ratio. Nevertheless, miss-classification could occur when HER2 is co-amplified with CEP17. To avoid this inherent defect, in the present study, we employed ddPCR assay using the human eukaryotic translation initiation factor 2C1 (EIF2C1) gene located at chromosome 1p34.3 as the reference control to quantify HER2 copy number in 31 frozen breast cancer tissues. HER2 status of these samples had been determined by FISH and classified as HER2-amplified and HER2-non-amplified breast cancers. The results showed that HER2 determined by ddPCR using HER2/EIF2C1 ratio was in good concordance with HER2 determined by FISH using HER2/CEP17 ratio, the concordance rate 87.1% (27/31), Kappa  = 0.719. The sensitivity and specificity of ddPCR assay was 90% (9/10) and 85.7% (18/21), respectively. The median HER2/EIF2C1 copy number ratio in HER2-amplified cancers (6.55, range 1.3-17.3) was significantly higher than in HER2-non-amplified cancers (1.05, range 0.6-3.6, p < 0.001). This study demonstrated that ddPCR using HER2/EIF2C1 ratio could accurately assess HER2 status in frozen breast cancer tissues. Thus, our findings warrant further studies into breast cancer with HER2-equivocal by IHC/FISH.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app