Add like
Add dislike
Add to saved papers

Thermal Response of Epigenetic Genes Informs Turtle Sex Determination with and without Sex Chromosomes.

Vertebrate sexual fate can be established by environmental cues (e.g., temperature-dependent sex determination, TSD) or by genetic content (genotypic sex determination, GSD). While methylation is implicated in TSD, the influence of broader epigenetic processes in sexual development remains obscure. Here, we investigated for the first time the embryonic gonadal expression of the genome-wide epigenetic machinery in turtles, including genes and noncoding RNAs (ncRNAs) involved in DNA/histone acetylation, methylation, ubiquitination, phosphorylation, and RNAi. This machinery was active and differentially thermosensitive in TSD versus GSD (ZZ/ZW) turtles. Methylation and histone acetylation genes responded the strongest. The results suggest these working hypotheses: (i) TSD might be mediated by epigenetically controlled hormonal pathways (via acetylation, methylation, and ncRNAs), or by (ii) hormonally controlled epigenetic processes, and (iii) key epigenetic events prior to the canonical thermosensitive period may explain differences between TSD and GSD. Novel epigenetic candidate regulators other than methylation were identified, including previously unknown ncRNAs that could potentially mediate gonadogenesis. These findings illuminate the molecular ecology of reptilian sex determination and permitted hypothesis building to help guide future functional studies on the epigenetic transduction of external cues in TSD versus GSD systems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app