Add like
Add dislike
Add to saved papers

Influence of the incorporation of the antimicrobial agent polyhexamethylene biguanide on the properties of dense and porous chitosan-alginate membranes.

This work is a continuation of a previous study which described the development of dense and porous chitosan-alginate polyelectrolyte complexes through the addition of different amounts of Pluronic F68 to the polymeric mixture. The present study consisted in the incorporation of an antimicrobial agent, polyhexamethylene biguanide (PHMB), to the previously developed system. PHMB was incorporated at 1 and 10% (w/w) with high incorporation efficiencies, varying from 72 to 86%. Release profiles in phosphate buffered saline were evaluated using the Korsmeyer-Peppas equation, which suggested a quasi-Fickian diffusion mechanism for all obtained formulations. The maximum release percentage was approximately 15% as a result from the high affinity between PHMB and the polysaccharides. The obtained polyelectrolyte complexes were able to prevent the growth of both Staphylococcus aureus and Pseudomonas aeruginosa on their surfaces, being considered potentially effective wound dressings.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app