Add like
Add dislike
Add to saved papers

High-Performance Acetylated Ioncell-F Fibers with Low Degree of Substitution.

Cellulose acetate is one of the most important cellulose derivatives. Herein we present a method to access cellulose acetate with a low degree of substitution through a homogeneous reaction in the ionic liquid 1,5-diazabicyclo[4.3.0]non-5-enium acetate ([DBNH][OAc]). This ionic liquid has also been identified as an excellent cellulose solvent for dry-jet wet fiber spinning. Cellulose was dissolved in [DBNH][OAc] and esterified in situ to be immediately spun into modified cellulose filaments with a degree of substitution (DS) value of 0.05-0.75. The structural properties of the resulting fibers, which are characterized by particularly high tensile strength values (525-750 MPa conditioned and 315-615 MPa wet) and elastic moduli between 10-26 GPa, were investigated by birefringence measurements, wide-angle X-ray scattering, and molar mass distribution techniques while their unique interactions with water have been studied through dynamic vapor sorption. Thus, an understanding of the novel process is gained, and the advantages are demonstrated for producing high-value products such as textiles, biocomposites, filters, and membranes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app