Add like
Add dislike
Add to saved papers

Integration of cell-free protein synthesis and purification in one microfluidic chip for on-demand production of recombinant protein.

Biomicrofluidics 2018 September
Recombinant proteins have shown several benefits compared with their non-recombinant counterparts in protein therapeutics. However, there are still some problems with the storage and distribution of recombinant proteins, owing to their temperature sensitivity. Microfluidic chips can integrate different functional modules into a single device because of the advantages of integration and miniaturization, which have the special potential to synthesize drugs when and where they are needed most. Here, we integrated cell-free protein synthesis and purification into a microfluidic chip for the production of recombinant protein. The chip consisted of a main channel and a branch channel. The main channel included two pinches, which were filled with template DNA-modified agarose microbeads and nickel ion-modified agarose beads as the cell-free protein synthesis unit and protein purification unit, respectively. The reaction mixture for protein synthesis was introduced into the main channel and first passed through the protein synthesis unit where the target protein was synthesized; next, the reaction mixture passed through the protein purification unit where the target protein was captured; and, finally, pure protein was collected at the outlet when washing buffer and eluting buffer were sequentially introduced into the branch channel. Enhanced green fluorescent protein (EGFP) was used as the model to investigate the performance of our chip. One chip could produce 70  μ l of EGFP solution (144.3  μ g/ml, 10.1  μ g) per batch, and another round of protein synthesis and purification could be performed after replacing or regenerating nickel ion-modified agarose beads. It should be possible to produce other recombinant proteins on demand with this chip by simply replacing the template DNA.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app