JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Regulation of platelet function and thrombosis by omega-3 and omega-6 polyunsaturated fatty acids.

Thrombosis is the most common underlying pathology responsible for morbidity and mortality in cardiovascular disease (CVD). Platelet adhesion, activation, and aggregation play central roles in hemostasis; however, the same process may also cause thrombosis and vessel occlusion at the site of ruptured atherosclerotic lesions leading to heart attack and stroke. ω-3 and ω-6 polyunsaturated fatty acids (PUFAs) are an essential component of the platelet phospholipid membrane and play a major role in many aspects of platelet function. Dietary supplementation of ω-3 and ω-6 PUFAs has long been used to slow the progression of CVD and to prevent acute cardiovascular events. Despite this, the role of ω-3 and ω-6 PUFAs and their oxylipin metabolites in platelet function remains controversial due to the lack in our understanding of the mechanistic regulation controlling platelet reactivity in vitro and substantial evidence for PUFA regulation of thrombotic events in vivo. In this review, we will outline the role of platelet physiology in hemostasis and the effect of ω-3 and ω-6 PUFAs on platelet function, with special emphasis on in vivo effects on hemostasis and thrombosis due to the role of PUFAs and their bioactive lipids in circulation. Further, recent mechanistic insights and evidence for cardio-protective effects of PUFAs and their bioactive lipids will be discussed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app