Add like
Add dislike
Add to saved papers

A pilot study using kernelled support tensor machine for distant failure prediction in lung SBRT.

We developed a kernelled support tensor machine (KSTM)-based model with tumor tensors derived from pre-treatment PET and CT imaging as input to predict distant failure in early stage non-small cell lung cancer (NSCLC) treated with stereotactic body radiation therapy (SBRT). The patient cohort included 110 early stage NSCLC patients treated with SBRT, 25 of whom experienced failure at distant sites. Three-dimensional tumor tensors were constructed and used as input for the KSTM-based classifier. A KSTM iterative algorithm with a convergent proof was developed to train the weight vectors for every mode of the tensor for the classifier. In contrast to conventional radiomics approaches that rely on handcrafted imaging features, the KSTM-based classifier uses 3D imaging as input, taking full advantage of the imaging information. The KSTM-based classifier preserves the intrinsic 3D geometry structure of the medical images and the correlation in the original images and trains the classification hyper-plane in an adaptive feature tensor space. The KSTM-based predictive algorithm was compared with three conventional machine learning models and three radiomics approaches. For PET and CT, the KSTM-based predictive method achieved the highest prediction results among the seven methods investigated in this study based on 10-fold cross validation and independent testing.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app