Add like
Add dislike
Add to saved papers

Plasmids for making multiple knockouts in a radioresistant bacterium Deinococcus radiodurans.

Plasmid 2018 September 25
The gene knockouts are mostly created using homologous recombination-based replacement of target gene(s) with the expressing cassette of selection marker gene(s). Here, we constructed a series of plasmids bearing the expressing cassettes of genes encoding different antibiotics markers like nptII (KanR ), aadA (SpecR ), cat (CmR ) and aac(3) (GenR ). D. radiodurans is a radioresistant Gram positive bacterium that does not support the independent maintenance of colE1 origin-based plasmids. Using these constructs, the disruption mutants of both single and multiple genes involved in segregation of secondary genome elements have been generated in this bacterium. Unlike single mutants, the double and triple mutants showed growth retardation under normal growth conditions and the synergistic effects with Topoisomerase II inhibitor on the growth of this bacterium. Thus, these plasmids could be useful in creating multiple deletions/disruptions in bacteria that do not support independent maintenance of colE1 origin-based plasmid.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app