Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Respiratory Syncytial Virus Infects Primary Neonatal and Adult Natural Killer Cells and Affects Their Antiviral Effector Function.

BACKGROUND: Respiratory syncytial virus (RSV) is a major cause of severe acute lower respiratory tract infections in infants. Natural killer (NK) cells are important antiviral effector cells that likely encounter RSV in the presence of virus-specific (maternal) antibodies. As NK cells potentially contribute to immunopathology, we investigated whether RSV affects their antiviral effector functions.

METHODS: We assessed the phenotype and functionality of primary neonatal and adult NK cells by flow cytometry after stimulation with RSV or RSV-antibody complexes.

RESULTS: We demonstrate for the first time that RSV infects neonatal and adult NK cells in vitro. Preincubation of virus with subneutralizing concentrations of RSV-specific antibodies significantly increased the percentage of infected NK cells. Upon infection, NK cells were significantly more prone to produce interferon-γ, while secretion of the cytotoxicity molecule perforin was not enhanced.

CONCLUSIONS: Our findings suggest that (antibody-enhanced) RSV infection of NK cells induces a proinflammatory rather than a cytotoxic response, which may contribute to immunopathology. Considering that most RSV vaccines currently being developed aim at inducing (maternal) antibodies, these results highlight the importance of understanding the interactions between innate effector cells and virus-specific antibodies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app