Add like
Add dislike
Add to saved papers

Characteristics of Biofilms Formed by Co-Culture of Listeria monocytogenes with Pseudomonas aeruginosa at Low Temperatures and Their Sensitivity to Antibacterial Substances.

We assessed the properties of biofilms (BFs) formed by mono- and co-cultures of Listeria monocytogenes and Pseudomonas aeruginosa (L+P-BF) at low temperatures and examined their sensitivity to several antibacterial substances. L. monocytogenes viable counts comprised only 1-10% of total L+P-BF viable counts at 10℃ and 15℃, indicating the significant prevalence of P. aeruginosa in co-cultures. L+P-BF formed at 10℃ and 15℃ showed very high resistance to antibiotics and NaClO. Examination of the effects of nattokinase and nisin, natural food additives with antibacterial properties, showed that their application alone failed to inhibit L+P-BF development at 10℃ and 15℃. However, a combined treatment with nisin and ethylenediaminetetraacetic acid, a food additive that can be used as a permeabilizing agent, suppressed the formation of L+P-BF at 10℃ and 15℃. Microscopy observations of L+P-BF did not reveal pronounced morphological changes in bacterial cell morphology. We also noted that P. aeruginosa resistance to the action of nisin during BF formation was higher when it was maintained in co-culture with L. monocytogenes. The results of the present study are an important step toward developing a safe formulation of acceptable food additives that could be used for suppression of BFs formed by pathogenic bacteria during food storage.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app