Add like
Add dislike
Add to saved papers

Aqueous extract of broccoli mediated synthesis of CaO nanoparticles and its application in the photocatalytic degradation of bromocrescol green.

CaO nanoparticles have been prepared using CaCl2 and aqueous extract of broccoli as a precursor and reducing agent, respectively. Different volumes of the aqueous broccoli extract were utilised to obtain Ca(OH)2 and subsequent calcination gave CaO nanoparticles. The synthesised CaO was confirmed by powder X-ray diffraction (XRD). The morphology was studied using transmittance electron microscopy (TEM), and the surface composition of Ca(OH)2 was explored using Fourier transform infrared spectroscopy. The major functional groups present in the capping material responsible for the reduction of the metal salt and the surface passivation of Ca(OH)2 were identified. The XRD pattern revealed cubic phase for all the CaO nanoparticles, and the crystallite size was estimated using Scherrer's equation showed a variation which is dependent on the volume of the extract used. TEM analysis showed different shapes, while the selected area electron diffraction (SAED) results confirmed the crystallinity of the nanoparticles. Thermogravimetric analysis of Ca(OH)2 showed the decomposition product to be CaO. Sample C3, which has the smallest particle size, was used as a catalyst for the degradation of bromocresol green via photo irradiation with ultraviolet light and the result revealed a degradation efficiency of 60.1%.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app