Add like
Add dislike
Add to saved papers

Enhancing purification and plasma stability of porcine interferon-α/γ by fusion to elastin-like polypeptide.

The clinical use of recombinant interferons (rIFNs) is limited by higher purification cost and quick clearance from circulation. Elastin-like polypeptides (ELPs) are a novel tag for recombinant protein purification and half-life extension. In this study, we evaluated the feasibility of ELP fusion for simple purification and half-life extension of recombinant porcine IFNs (rPoIFNs). After construction of five different fusion expression vectors, we optimized the conditions for soluble protein expression and purification. SDS-PAGE analysis showed that, unlike PoIFNα-His and PoIFNγ-His, PoIFNα-ELP, ELP-PoIFNα and PoIFNαγ-ELP were expressed mainly as soluble proteins at 20 ℃. The optimal conditions for the inverse transition cycling (ITC) of three ELP fusion proteins were 2 M NaCl at 28 ℃. After two rounds of ITC, the three ELP fusion proteins were purified to more than 90% purities, which were comparable to that of affinity-purified PoIFNα-His and PoIFNγ-His. Cytopathic effect inhibition assay showed that the five rPoIFNs had potent but different antiviral activities against two different viruses on two different cell types. The plasma solubility assay showed that the three ELP-fused rPoIFNs remained as soluble proteins under the physical conditions. The plasma stability of three ELP-fused rPoIFNs was significantly improved in comparison with that of PoIFN-α. These data suggest that ELP fusion is a feasible strategy to enhance purification and plasma stability of rPoIFNs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app