Add like
Add dislike
Add to saved papers

Altered attention networks and DMN in refractory epilepsy: A resting-state functional and causal connectivity study.

PURPOSE: Epilepsy is considered a disorder of neural networks. Patients diagnosed with refractory epilepsy frequently experience attention impairments. Seizure activity in epilepsy may disturb brain networks and damage the brain function of attention. The aims of this study were to assess functional and causal connectivities of the attention networks and default mode network using resting-state functional magnetic resonance imaging (fMRI).

METHOD: Resting-state fMRI data were gathered from 19 patients with refractory epilepsy (mixed localization and aetiologies) and 21 healthy people. The fMRI data were analyzed by group independent component analysis (ICA) fMRI toolbox to extract dorsal attention network (DAN), ventral attention network (VAN), and default mode network (DMN). The components of the selected networks were compared between patients and healthy controls to explore the change in functional connectivity (FC). Granger causality analysis was performed by taking the aforementioned significant brain areas as regions of interest (ROIs) to calculate autoregression coefficients of each pair of ROIs. Comparisons were done to find the significantly different causal connectivity when FC was changed between patients and healthy controls.

RESULTS: In DAN, the FC values of the bilateral frontal eye field (FEF) and left intraparietal sulcus (IPS) were decreased. In VAN, the FC values of the double-side ventral prefrontal cortex (vPFC) and the temporoparietal junction (TPJ) were reduced. As for DMN, the FC values of the bilateral medial prefrontal cortices (mPFC) were decreased whereas those for the bilateral precuneus (PCUN) were increased. Granger causal connectivity values were correlated: causal influence was decreased significantly from the left IPS (in DAN) to the double side of the vPFC but remained the same for the right FEF (in DAN) to the right TPJ. The value was decreased from the left PCUN (in DMN) to the right TPJ and FEF, and the causal flow from the right PCUN to the right TPJ and bilateral vPFC was also significantly inhibited (p < 0.05).

CONCLUSION: Frequent seizures in patients with refractory epilepsy may damage the cortex and disturb DAN, VAN, and DMN, leading to functional and causal connectivity alteration. In addition, epileptic activity may disrupt network interactions and further influence information communication.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app