Add like
Add dislike
Add to saved papers

Injectable, compression-resistant polymer/ceramic composite bone grafts promote lateral ridge augmentation without protective mesh in a canine model.

OBJECTIVE: The objective of this study was to test the hypothesis that a compression-resistant bone graft augmented with recombinant human morphogenetic protein-2 (rhBMP-2) will promote lateral ridge augmentation without the use of protective mesh in a canine model.

MATERIALS & METHODS: Compression-resistant (CR) bone grafts were evaluated in a canine model of lateral ridge augmentation. Bilateral, right trapezoidal prism-shaped defects (13-14 mm long × 8-9 mm wide × 3-4 mm deep at the base) in 13 hounds (two defects per hound) were treated with one of four groups: (i) absorbable collagen sponge + 400 μg rhBMP-2/ml (ACS, clinical control) protected by titanium mesh, (ii) CR without rhBMP-2 (CR, negative control), (iii) CR + 200 μg rhBMP-2 (CR-L), or (iv) CR + 400 μg rhBMP-2 (CR-H). All animals were euthanized after 16 weeks. Ridge height and width and new bone formation were assessed by μCT, histology, and histomorphometry. The release kinetics of rhBMP-2 from CR bone grafts in vitro and in vivo in a femoral condyle defect model in rabbits was also evaluated.

RESULTS: All four bone grafts promoted new bone formation (11-31.6 volume%) in the lateral ridge defects. For CR grafts, ridge height and width increased in a dose-responsive manner with increasing rhBMP-2 concentration. Ridge height and width measured for CR-H without the use of protective mesh was comparable to that measured for ACS with a protective mesh.

CONCLUSIONS: At the same dose of rhBMP-2, an injectable, compression-resistant bone graft resulted in a comparable volume of new bone formation with the clinical control (ACS). These findings highlight the potential of compression-resistant bone grafts without the use of protective mesh for lateral ridge augmentation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app