Add like
Add dislike
Add to saved papers

A Bayesian adaptive phase II clinical trial design accounting for spatial variation.

Conventional phase II clinical trials evaluate the treatment effects under the assumption of patient homogeneity. However, due to inter-patient heterogeneity, the effect of a treatment may differ remarkably among subgroups of patients. Besides patient's individual characteristics such as age, gender, and biomarker status, a substantial amount of this heterogeneity could be due to the spatial variation across geographic regions because of unmeasured or unknown spatially varying environmental and social exposures. In this article, we propose a hierarchical Bayesian adaptive design for two-arm randomized phase II clinical trials that accounts for the spatial variation as well as patient's individual characteristics. We treat the treatment efficacy as an ordinal outcome and quantify the desirability of each possible category of the ordinal efficacy using a utility function. A cumulative probit mixed model is used to relate efficacy to patient-specific covariates and geographic region spatial effects. Spatial dependence between regions is induced through the conditional autoregressive priors on the spatial effects. A two-stage design is proposed to adaptively assign patients to desirable treatments according to each patient's spatial information and individual covariates and make treatment recommendations at the end of the trial based on the overall treatment effect. Simulation studies show that our proposed design has good operating characteristics and significantly outperforms an alternative phase II trial design that ignores the spatial variation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app